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Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has
been renewed focus on the relationship between the basal ganglia and declarative memory, including the
involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains
unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the stria-
tum in declarativememory retrieval. From this review, we propose that, alongwith the prefrontal cortex (PFC),
the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three
hypotheses for the specific role of striatum in retrieval: (1) striatum modulates the re-encoding of retrieved
items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information
into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating),
and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement
learning).
Introduction
Declarative memory retrieval refers to the conscious recovery of

previously stored experiences, facts, and concepts that are veri-

fiable through verbal report (Tulving, 1972). It has long been

known that the medial temporal lobe (MTL) system is necessary

for the formation, consolidation, and retrieval of declarative

memories (Cohen et al., 1997; Squire, 1992). By contrast, other

types of long-term memory, such as skill learning or classical

conditioning do not appear to require the MTL memory system

(Corkin, 1968; Knowlton et al., 1994; Cohen et al., 1997). Rather,

these forms of ‘‘nondeclarative’’ memory are strongly associated

with the reward driven mechanisms of the basal ganglia

(Packard et al., 1989; Knowlton et al., 1996; Cohen et al., 1997;

Shohamy et al., 2004). However, mounting evidence from both

neuroimaging and neuropsychological studies of declarative

memory have renewed focus on interactions between the

declarative and nondeclarative systems, and have highlighted

the potential role of the basal ganglia, including striatum

(Figure 1A), in declarative memory performance both at encod-

ing and retrieval (Shohamy and Adcock, 2010; Cohn et al.,

2010; Han et al., 2010; Long et al., 2010; Poldrack and Foerde,

2008; Moustafa and Gluck, 2011).

Outside of the long-term memory domain, there has been

growing recognition of a broader role for striatal-frontal interac-

tions beyond basic motor control. Specifically, recent years

have seen a growth in our understanding of the mechanisms by

which striatum supports higher cognitive functions like working

memory, decision making, categorization, and cognitive control

(Graybiel and Mink, 2009; Doll and Frank, 2009; Cools, 2011;

Seger and Miller, 2010; Landau et al., 2009; Stelzel et al., 2010;

Lewis et al., 2004; Badre and Frank, 2012; Badre et al., 2012).

However, to date, we still have a limited understanding of the

role of these striatal mechanisms in declarativememory retrieval.

Here, we review evidence for the involvement of the striatum

in declarative memory retrieval. First, based on evidence from
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neuroimaging and neuropsychological studies of declarative

memory, we argue that, along with the prefrontal cortex (PFC),

the striatum supports the cognitive control of memory retrieval.

Then, leveraging models of reinforcement learning and cognitive

control theory outside of the memory domain, we propose a

set of novel hypotheses regarding the potential mechanistic

role of the striatum in declarative memory as a basis for future

research.

Striatal Responses to Item Recognition
An adaptive function of the declarative memory system is

the ability to discriminate items and contexts with which an

animal has prior experience versus those that are novel. The

ability to recognize previously encountered items is known to

require MTL structures, including perirhinal, parahippocampal,

and hippocampal cortex (Squire, 1992; Schacter and Wagner,

1999; Eichenbaum et al., 2007; Squire andWixted, 2011). Never-

theless, the wider view afforded by functional neuroimaging

studies has provided initial evidence for striatal involvement

during item discrimination; though this system has rarely been

a focus of these experiments.

In the item recognition paradigm, participants first encode

a series of items, usually words or pictures, and are then shown

a mix of items that they had seen previously during encoding

along with new items that have not been seen before. For each

item, the participant judges whether the item has been seen

previously (old) or not (new). Thus, contrasting trials on which

participants correctly judged an old item as ‘‘old’’ (hits) against

trials on which a participant correctly judged a new item as

‘‘new’’ (correct rejections [CR]) probes the neural correlates of

‘‘retrieval success.’’

Since the earliest event-related fMRI studies of the item-

recognition task (i.e., Buckner et al., 1998; Donaldson et al.,

2001; Rombouts et al., 2001), retrieval success has yielded stria-

tal activation. Moreover, this effect has been replicated across
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Figure 1. Basic Anatomy of the Basal
Ganglia and Schematic of Frontostriatal
Circuitry
(A) Locations of basal ganglia structures are out-
lined on coronal slices (caudate, putamen, and
nucleus accumbens [NAcc]); GPe, external seg-
ment of the globus pallidus; GPi, internal segment
of the globus pallidus; SNc, substantia nigra pars
compacta; and STN, subthalamic nucleus.
(B) Schematic of frontal-striatal circuitry and the
VTA-hippocampus loop. Projections from frontal
cortex through the striatum (caudate, putamen,
and nucleus accumbens), subthalamic nucleus
(STN), globus pallidus, and thalamus drive adap-
tive gating of working memory representations.
The VTA-hippocampal loop includes direct
projections from ventral tegmental area (VTA) to
hippocampus, and a circuit through the nucleus
accumbens (NAcc) and globus pallidus from the
hippocampus to VTA. The striatum is frequently
characterized by a dorsal/ventral division (e.g.
Bornstein and Daw, 2011), with different subre-
gions of caudate and putamen existing on both
sides of the divide. Green arrows indicate excit-
atory connections; red circles indicate inhibitory
connections; blue diamonds indicate modulatory
connections. GPe: external segment of the globus
pallidus; GPi: internal segment of the globus
pallidus; SNc: substantia nigra pars compacta.
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multiple variants of encoding tasks and stimulus materials.

Spaniol and colleagues (2009) analyzed 81 fMRI studies of

episodic memory, a subset of which included contrasts of

encoding success (subsequent hits greater than misses) and/or

retrieval success (hits greater than CR). A quantitative meta-

analytic procedure indicated that retrieval success consistently

activated striatum across studies, including both dorsal striatum

in the left caudate and ventral striatum in regions of caudate,

putamen, and nucleus accumbens (also see Kim, 2011).

Figure 2 shows this effect in an updated recoding and reanalysis

of these data conducted for this review. Moreover, a contrast

between retrieval success and encoding success showed that

the ventral caudate was more reliably associated with retrieval

success than encoding success across studies. Importantly,

retrieval success in striatum is not dependent on an actual

prior experience with an item. Rather, striatum shows greater

activation for false alarms (new items incorrectly judged as

old) than CR or misses (Abe et al., 2008). Thus, like most

regions showing retrieval success effects (Wagner et al., 2005),

striatal activation tracks the perception of an item as being

old during a recognition memory task, rather than it having

been previously encountered on the study list. Thus, striatal

retrieval success effects cannot be trivially explained based

on a prior association with positive reinforcement formed at

encoding.

Generally consistent with the neuroimaging data, deficits in

patients with Parkinson’s disease (PD)—a disease arising from

degeneration of cells in the substantia nigra that are a primary

source of dopaminergic input into the striatum (Figure 1B)—indi-
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cate that the basal ganglia are broadly

necessary for normal levels of recogni-

tion memory performance. In particular,
though not suffering from the profound amnesias accompanying

MTL damage, PD patients do demonstrate deficits in recognition

memory relative to controls in studies with sufficient power

(Whittington et al., 2000).

Accounting for these recognition deficits in PD has proven

difficult and multifaceted. Across studies, deficits have been

evident sometimes in recollection (Barnes et al., 2003; Edelstyn

et al., 2007, 2010; Drag et al., 2009) and sometimes in familiarity

(Davidson et al., 2006; Weiermann et al., 2010). Moreover, there

seems ample evidence that at least a portion of memory deficits

observed in PD arise from a failure to engage in effective encod-

ing strategies (Knoke et al., 1998; Vingerhoets et al., 2005).

However, a recent study has provided convincing evidence for

a recollection deficit in PD when encoding strategy was

controlled. Cohn et al. (2010) had PD patients and age-matched

controls study word pairs under shallow and deep encoding

conditions, and estimated familiarity and recollection using the

process-dissociation procedure (Yonelinas et al., 1995). Relative

to shallow encoding, deep encoding normalized the patients’

familiarity relative to the controls, demonstrating the efficacy

of the deep encoding manipulation. However, whereas recollec-

tion improved for controls when items were deeply encoded,

patients showed no improvement in recollection for deeply en-

coded items. As also noted by the authors, this retrieval deficit

could be interpreted as a failure of the ‘‘executive’’ component

of retrieval, such that patients did not take strategic advantage

of the elaborative encoding strategy. We will return to the ques-

tion of executive (i.e., cognitive control) deficits below. However,

regardless of the specific source of the deficit, the evidence for
5, August 9, 2012 ª2012 Elsevier Inc. 381



Figure 2. Comparison of Activations from Meta-analyses and Neuroimaging Data Regarding Basal Ganglia Involvement in Novelty
Detection, Reward Processing, and Declarative Memory
Points labeled A through K are the basal ganglia foci reported in the respective studies. Colored areas are from our recoding and reanalysis of the relevant studies
from the Spaniol et al. (2009) and Kim (2011) meta-analyses in GingerALE Version 2.1.1 (brainmap.org) in Talaraich space. Areas associated with objective
recollection are shown in red and areas associated with retrieval success are shown in green; their overlap is marked in blue. Points labeled L are the foci from the
meta-analysis reported by Spaniol et al. (2009). See themain text and individual references formore information about individual contrasts. CR, correct rejections.
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a component of impaired retrieval in PD from this and prior work

seems compelling.

It should be noted, however, that PD is not a selective striatal

disorder, making it difficult to assign deficits to striatum

specifically, as opposed to frontal disruption or dysfunctional

dynamics within the broader basal ganglia system. However,

recognition deficits in PD indicate that the nigra-striatal

dopamine system is broadly necessary for retrieval. Moreover,

declarative memory deficits have been demonstrated in a variety

of disease conditions involving the nigra-striatal dopamine

system such as Huntington’s disease, which is more localizable

to striatum, and schizophrenia (e.g., Hodges et al., 1990;

van Oostrom et al., 2003; Solomon et al., 2007). Thus, when

considered together with the neuroimaging data that localizes

retrieval effects within the striatum, the evidence begins to

converge on a necessary role for these structures during

retrieval. However, as will be discussed below, this role likely

relates to the way that memory retrieval is modulated by retrieval

goals, as opposed to being a source of the mnemonic signal

itself.

Striatal Responses to Item Novelty
The apparent sensitivity of striatum to perceived oldness is,

perhaps, surprising in light of the established association of the

broader mesolimbic/nigra-striatal dopamine system with the

opposite property, namely item novelty. Physiological recording

studies in the rodent (Schultz, 1998; Horvitz et al., 1997; Horvitz,

2000) have observed activation to stimulus novelty of cells in the

ventral tegmental area (VTA) and substantia nigra (SN). Impor-

tantly, novelty responses in these cells are modulated by

salience and goal relevance of the novel stimulus and are sepa-

rable experimentally from the established responses of these

cells to expected reward (e.g., Horvitz, 2000). Similar effects of

item novelty in SN/VTA have also been observed in human

fMRI studies (Bunzeck and Düzel, 2006) and are again separable

from reward-related activation.

Novelty responses in the SN/VTA are hypothesized to arise via

inputs from the hippocampus (Lisman and Grace, 2005), which

computes the novelty of encountered items. Novelty responses

in VTA neurons, in turn, are hypothesized to project back to

hippocampus where they may enhance encoding of the novel

item through dopaminergic modulation of hippocampal long-
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term potentiation (LTP). This hippocampal-VTA loop can serve

the adaptive function of selectively enhancing encoding for novel

items that are behaviorally relevant for the animal (Lisman and

Grace, 2005; Shohamy and Adcock, 2010). Evidence from

human fMRI studies has been consistent with this hypothesis,

demonstrating that novelty at encoding elicits responses in

SN/VTA that are associated with beneficial effects on subse-

quent memory (Wittmann et al., 2007; Schott et al., 2004; Krebs

et al., 2009).

Importantly, as noted above, SN/VTA cells also provide

dopaminergic input into the striatum (Figure 1B) where the infor-

mation they convey about expected reward and other behavior-

ally relevant features of an input, like novelty, can influence

learning, action selection, and decision-making. For example,

when harvesting reward in a stochastic environment, strategi-

cally directing exploratory behavior to novel items has the poten-

tial to glean the most new information about that environment

(Kakade and Dayan, 2002; Daw et al., 2006; Frank et al.,

2009; Badre et al., 2012). Indeed, striatal novelty responses

have been specifically associated with novelty-driven choices

during economic decisions (Guitart-Masip et al., 2010; Wittmann

et al., 2008; Krebs et al., 2009). Moreover, many studies citing

SN/VTA activation in response to novelty, also report responses

to novel greater than familiar items in the striatum (e.g., Bunzeck

and Düzel, 2006; Guitart-Masip et al., 2010). Notably, these acti-

vations fall in close proximity to those associated with retrieval

success (Figure 2).

Thus, considered together with retrieval success effects, the

evidence for novelty responses in the striatum argues against

obligatory coding of item oldness in striatum as a consequence

of episodic retrieval. Rather, striatal responses to episodic

memory signals are likely modulated depending on the adaptive

significance of ‘‘oldness’’ or ‘‘newness’’ to the animal’s current

actions and desired outcomes.

Two recent findings provide support for this hypothesis.

Bunzeck et al. (2010) showed that responses in the striatum

are scaled adaptively based on expectations of the relative

novelty and oldness of items in the environment. Han et al.

(2010) more directly manipulated the goal relevance of item

novelty versus oldness and revealed a similar dynamic flexibility

in striatal responses. Specifically, retrieval goals were manipu-

lated by associating either ‘‘old’’ or ‘‘new’’ responses with

http://brainmap.org


Figure 3. Striatal Activation Modulated by
Incentive in Han et al. (2010)
Activation in caudate tracking the incentivized
response—either hits or correct rejections (CR)—
regardless of whether or not explicit feedback (FB)
was present, suggesting that striatal activity can
be driven by incentives and goal-relevant
responses (adapted with permission from Han
et al., 2010).
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potential monetary reward. When ‘‘old’’ responses were incen-

tivized, participants earned money for correct old responses

(hits) and lost money for incorrect old responses (false alarm)

and neither gained nor lost money for ‘‘new’’ responses (and

vice versa when ‘‘new’’ was incentivized). Activity in the caudate

tracked the incentivized response independent of whether the

item was studied or novel (Figure 3). It should be noted that

this pattern was seen regardless of whether or not participants

received explicit feedback after their response, suggesting that

striatal activity can be driven by satisfaction of internal goals

and incentives.

Of course, a key question is whether these results can be

reconciled with retrieval success effects, when there is no overt

incentive to locate old versus new items. First, as is evident in

Figure 2, the subregion of caudate that demonstrated these

dynamic effects matched closely that observed across studies

of retrieval success. Second, in a condition where neither

response was incentivized, Han and colleagues (2010) found

greater activity for hits compared to correct rejections, consis-

tent with previous work. Similarly, striatal activity was seen for

hits even when new responses were incentivized. Thus, all else

being equal, participants subjectively valued ‘‘old’’ responses

more than ‘‘new’’ responses when performing recognition

memory tasks.

In summary, the evidence fromstudies of retrieval success and

novelty detection indicates that striatum plays a role in the basic

ability to behave according to the oldness or novelty of an item.

Though in light of the qualitative differences in the severity of

memory deficits accompanying striatal versus MTL dysfunction,

it is unlikely that striatum is the source of memory signals

conveying oldness versus novelty. Accordingly, as with percep-

tual and other inputs to the striatal system, MTL signals coding

item novelty or oldness will elicit striatal responses dependent

on the value of this information for current behavioral goals.

Importantly, however, goals need not be restricted to

outcomes achieved through overt behavior. Rather, the process

of retrieval itself can be conducted with the expectation of

a particular information retrieval outcome. For example, when

trying to remember a recent conversation with a good friend,

we might try thinking of our friend’s face as a cue. We adopt

this strategy with the implicit expectation that it will yield an

outcome that meets our goal, namely remembering our previous
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conversation. To distinguish this type of

outcome from an exogenous reward or

behavioral goal, we will refer to this type

of desired information retrieval outcome

as a retrieval goal. In what follows, we

will argue that the striatum is particularly
important for declarative memory when cognitive control is

required to achieve a retrieval goal.

Striatum and the Cognitive Control of Memory
The ability to internally modulate ongoing processing based on

goals, expectations, and strategies is generally referred to as

cognitive control. As introduced above, in the context of

memory, cognitive control mechanisms are important for guiding

and monitoring retrieval in order to achieve a particular retrieval

goal. Cognitive control of memory has an established depen-

dence on frontal lobe function, evident in the unique memory

impairments of frontal lobe patients. In contrast to the profound

amnesia seen in patients with damage to the hippocampus and

associated MTL areas (Scoville and Milner, 1957; Squire, 1986,

1992), patients with damage to PFC demonstrate deficits in

memory tasks that involve strategic control of memory, goal-

directed manipulation of mnemonic information, or overcoming

interference (Moscovitch, 1992; Stuss et al., 1994; Wheeler

et al., 1995; Aly et al., 2011; Thompson-Schill et al., 1998).

Neuroimaging studies have contributed specificity, highlighting

different frontal systems in support of separate control pro-

cesses that contribute to these demanding retrieval tasks (e.g.,

Badre et al., 2005; Badre and Wagner, 2007; Buckner, 1996;

Buckner et al., 1998; Poldrack et al., 1999; Anderson et al.,

2004; Kuhl et al., 2007; Yonelinas et al., 2005; Gallo et al.,

2010; Long et al., 2010). Importantly, similar lines of neuroimag-

ing and neuropsychological evidence also implicate the striatum

in the cognitive control of declarative memory retrieval.

Cognitive Control of Episodic Retrieval

Within the episodic retrieval domain, sourcememory tasks place

explicit demands on cognitive control. In a source memory

experiment, participants are required to verify a specific detail

from a prior encoding event, such as indicating what type of

task was performed with the item. In these tasks, the retrieval

goal is explicit and highly specific, and so retrieval must

be directed to successful recovery of only the task-relevant

‘‘source’’ detail to exclusion of other competing details. Thus,

source memory decisions involve greater demands on cognitive

control mechanisms than do simple item recognition decisions.

Contrasts between source and item recognition memory

consistently locate activation in a network of frontal and parietal

regions that include the striatum. In their meta-analysis,
5, August 9, 2012 ª2012 Elsevier Inc. 383
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Spaniol et al. (2009) reported consistent source memory effects

(i.e., ‘‘objective recollection’’) in left dorsal caudate, overlapping

with the left dorsal striatal focus observed for retrieval success

(Figure 2). In our reanalysis and recoding of these data, we found

that the effects in caudate were evident both for studies con-

trasting correct source versus correct item decisions and those

contrasting correct versus incorrect source decisions. Thus, the

preferential effects of source memory in caudate were neither

simply due to performing the more difficult source task nor

merely to successful retrieval, irrespective of whether it was

goal directed or not.

Importantly, the association of striatum with source memory

relative to item decisions is not necessarily reflective of the

contribution of recollection versus familiarity in these two types

of tasks. Studies that have distinguished between spontaneous

recollection versus familiarity during item recognition (such as is

assessed by using the remember/know procedure) have not

consistently located activation in the striatum when participants

merely experienced recollection relative to familiarity. Direct

contrast of source retrieval versus recollection during item

recognition indicated that left caudate was more consistently

observed across studies of source memory (Spaniol et al.,

2009). Thus, the need for cognitive control, as opposed to the

mere occurrence of recollection, modulates striatal activation

during episodic memory retrieval.

PD patients also demonstrate consistent deficits in cognitive

control of memory. In general, PD patients show greater deficits

in less structured retrieval contexts, such as free recall para-

digms, relative to recognition memory paradigms (Taylor et al.,

1990; Dubois et al., 1991; Zgaljardic et al., 2003). Though likely

partially arising from ineffective encoding (Knoke et al., 1998;

Vingerhoets et al., 2005), their deficits on these tasks could

also be traced to a failure to employ effective retrieval strategies.

For example, studies using the California Verbal Learning Test

(Delis et al., 1987) have shown that PD patients show decreased

semantic clustering at retrieval relative to controls (van Oostrom

et al., 2003; Brønnick et al., 2011). Thus, deficits in recall among

PD patients may partially be traced to a failure to effectively

employ strategic control processes at retrieval.

Cognitive control during memory retrieval is also important to

overcome interference, such as that arising through automatic

retrieval of irrelevant information. PD patients show difficulty

in overcoming such memory interference (Helkala et al.,

1989; Rouleau et al., 2001; but see Sagar et al., 1991). Again,

though likely partly due to encoding, these effects may also be

attributable to retrieval deficits. For example, Crescentini and

colleagues (2011) employed a part-list cuing paradigm designed

to induce interference via external retrieval cues. PD patients

and healthy age-matched controls studied separate word lists

under shallow and deep encoding. Following shallow encoding,

both groups showed decreased retrieval in the interference

condition relative to a noninterference control. In contrast,

following deep encoding, control participants showed equivalent

performance in the interference and control condition, while

the patients still showed impaired retrieval in the interference

condition. Thus, akin to the result from Cohn et al. (2010) in

recognition memory, this part-list cueing effect could be

interpreted as a failure to effectively take advantage of a good
384 Neuron 75, August 9, 2012 ª2012 Elsevier Inc.
encoding strategy at retrieval; in this case, in order to overcome

interference.

Cognitive Control of Semantic Retrieval

Striatal involvement in the cognitive control of declarative

memory retrieval generalizes beyond MTL-dependent episodic

memory to include semantic memory retrieval. Semantic

memory refers to knowledge of facts, concepts, andwordmean-

ings that are independent of a specific encoding context and that

may be stored in a distributed neocortical representation outside

of the medial temporal lobe (Tulving, 1972; McClelland and

Rogers, 2003). As with episodic retrieval, access to semantic

knowledge can be bottom up and cue driven or it can be

goal directed, requiring cognitive control (Badre and Wagner,

2007). Unlike episodic memory, however, it is easier to isolate

observed effects, such as in patients, as arising during retrieval

rather than encoding. Here again, the evidence generally

suggests that the striatum is important for control of semantic

memory retrieval.

Badre et al. (2005) investigated the neural systems supporting

the cognitive control of semantic memory retrieval. This study

focused on the contribution of left ventrolateral PFC (VLPFC) to

different forms of cognitive control of memory retrieval. In a

reanalysis conducted for this review, a manipulation of

controlled semantic retrieval located activation in the left dorsal

caudate (Figure 2). Perhaps consistent with this finding, a recent

study from Han et al. (2012) found that VLPFC was preferentially

engaged during a demanding retrieval task (source memory

versus itemmemory), but only for semantically meaningful items,

suggesting that VLPFC was engaged in semantic elaboration to

enhance retrieval. The caudate showed a qualitatively identical

pattern of activation. Thus, as with the Badre et al. (2005) result

noted above, activation in caudate is observed under the same

conditions requiring cognitive control of semantic memory that

engaged VLPFC.

Consistent with the imaging data, at least one study has

located interference-induced deficits in semantic retrieval in

PD patients. Compared to age-matched controls, PD patients

showed an impaired ability to produce a semantically related

verb when presented with a noun (Crescentini et al., 2008). The

deficit was greatest in a condition where there was no strongly

associated response for the presented stimulus, and instead

many weakly associated target verbs.

Hence, as with episodic retrieval, the striatum likely interacts

with the PFC to play a causal role in the goal-directed retrieval

and selection of semantic information frommemory. Importantly,

this suggests frontostriatal circuits may play a similar role in the

cognitive control of both episodic and semantic retrieval.

However, future research will need to test whether this common

function in semantic versus episodic memory is instantiated the

same or separable frontostriatal circuits.

Hypotheses for the Role of Striatum in Declarative
Memory Retrieval
From the preceding review, it seems evident that the striatum

plays a necessary role in optimal declarative retrieval perfor-

mance, particularly under conditions requiring the cognitive

control of memory. In this way, the contribution of striatum

appears to mirror that of the frontal cortex during declarative



Table 1. Evidence Regarding Striatum in Declarative Memory

Retrieval

Effect Example Reference

Neuroimaging

Retrieval success (hits > CR) during

item recognition

Spaniol et al., 2009

Perceived retrieval success (FA > CR) Abe et al., 2008

Retrieval success > encoding success Spaniol et al., 2009

Novelty responses during novelty

detection

Bunzeck and Düzel, 2006

Adaptive scaling based on behavioral

significance/incentive value

of familiarity/novelty

Bunzeck et al., 2010

Incentive value of old or new memory

response

Han et al., 2010

Objective recollection (source > item

recognition)

Spaniol et al., 2009

Retrieval of weak semantic associates Badre et al., 2005

Clustered > nonclustered items

during free recall

Long et al., 2010

Increases with output position

during free recall

Long et al., 2010

Violation of expectations during retrieval O’Connor et al., 2010

Neuropsychology

Recognition memory deficits Whittington et al., 2000

Recollection deficits Edelstyn et al., 2010

Familiarity deficits Weiermann et al., 2010

Impaired recollection in deep LoP

encoding condition

Cohn et al., 2010

Impaired familiarity in shallow LoP

encoding condition

Cohn et al., 2010

Decreased semantic clustering van Oostrom et al., 2003

Difficulty overcoming retrieval

interference

Crescentini et al., 2011

Deficits in verb production based on

semantic-relatedness

Crescentini et al., 2008
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memory tasks (Stuss et al., 1994; Wheeler et al., 1995; Aly et al.,

2011; Thompson-Schill et al., 1998). However, research on the

neural mechanisms of cognitive control and reinforcement

learning, outside of the context of memory, has suggested that

striatum and frontal cortex have distinct but complementary

roles (Braver and Cohen, 2000; Cools et al., 2004; O’Reilly and

Frank, 2006; McNab and Klingberg, 2008; Cools, 2011; Badre

and Frank, 2012). In particular, whereas lateral PFC supports

cognitive control by sustaining task-relevant information in

workingmemory (i.e., Miller and Cohen, 2001), the striatum plays

a key role in flexibly updating and selecting from among candi-

date frontal motor or cognitive representations based on their

utility or adaptive value for current goals (Mink, 1996; Gurney

et al., 2001; Brown et al., 2004; Cools, 2011; Frank and Badre,

2012). In this way, frontostriatal circuits allow for separable main-

tenance and updating (Hochreiter and Schmidhuber 1997), with

striatum playing a key role in mapping acquired value/utility to

action selection.
Drawing on this basic cognitive control and reinforcement

learning literature, we propose three hypotheses for striatal

mechanisms during declarative memory retrieval: (1) striatum

modulates the re-encoding of retrieved items in accord with their

expected utility (i.e., adaptive encoding), (2) striatum selectively

admits information into working memory that is expected to

increase the likelihood of successful retrieval (i.e., adaptive

gating), and (3) striatum enacts adjustments in cognitive control

based on the outcome of retrieval (i.e., reinforcement learning).

These hypotheses are not intended as an exhaustive list

nor are they mutually exclusive. However, each accounts for

a portion of the extant data on striatal involvement in declarative

memory (see Table 1) and has some limited evidence in its

support.

Hypothesis 1: Retrieval as Adaptive Encoding

Striatal activation during declarative memory retrieval may serve

to modulate re-encoding of previously encoded items as a func-

tion of their behavioral relevance and their likelihood of future

utility. The goal of memory retrieval may be expressed as the

recovery of items that have an expected utility for an agent

exceeding the costs associated with retrieval itself (Anderson

and Milson, 1989). From this perspective, it is important for the

availability of items in memory to be prioritized by their expected

utility, particularly in a given task context. Among the various

cues to utility for a given item is its history of prior use: items

that were retrieved in a particular context previously are more

likely than others to be useful in that context again. So, retrieval

itself is an important cue to the utility of an item. Indeed, analyses

of retrieval that leverage prior use statistics—both in human

declarative memory and in other analogous information retrieval

contexts like library book withdrawals or Google search

queries—account for a wide range of retrieval phenomena

(Burrell, 1980; Anderson and Milson, 1989; S. Brin and L. Page,

1998, Seventh International World-Wide Web Conference

(WWW 1998), conf.; Griffiths et al., 2007). Thus, it is adaptive

to have a means of prioritizing memories based on context-

dependent prior utility.

Striatal dopamine signals elicited by retrieval could provide

one mechanism by which memories are strengthened in accord

with their context-dependent utility. It is well established that

classical midbrain dopamine structures, such as the SN and

VTA, along with medial prefrontal cortex, and ventral and dorsal

striatum respond as a function of expected utility (e.g., Knutson

et al., 2001a, 2001b, 2005). Projections from the midbrain to

hippocampus can support modulation of hippocampal encoding

by cells in these regions. For instance, dopamine can modulate

synaptic change via LTP within hippocampus, such as by

decreasing LTP thresholds within CA1 fields (Li et al., 2003;

Jay, 2003; Lemon and Manahan-Vaughan, 2006). Thus, the ni-

gra-striatal dopamine system is generally well suited for coordi-

nating dopaminergic modulation of hippocampal encoding while

processing items associatedwith high expected utility (Shohamy

and Adcock, 2010).

Recent evidence directly supports the hypothesis that the

nigra-striatal dopamine system modulates hippocampal encod-

ing as a function of the expected utility of an item (reviewed in

Shohamy and Adcock, 2010), albeit not during retrieval itself.

As already discussed, the hippocampal-VTA loop is thought to
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enhance memory for novel items in an adaptive fashion (Schott

et al., 2004; Wittmann et al., 2007; Krebs et al., 2009). Moreover,

two recent studies have provided evidence for dopaminergic

modulation at encoding in accord with anticipated reward statis-

tics. Wittmann et al. (2005) demonstrated that cues predicting

subsequent reward lead to greater activation in ventral striatum

and midbrain relative to pictures that did not predict reward.

Moreover, activation in these striatal and midbrain regions

was predictive of subsequent memory at the longer test delay

for the rewarded but not the neutral pictures. By contrast,

hippocampus showed subsequent memory effects for both the

rewarded and neutral items and did not differentiate the two.

Adcock and colleagues (2006) more directly incentivized

retrieval itself, by providing participants a cue indicating that

remembering an upcoming picture during a later recognition

test would be worth either high or low reward. Again, regions

of VTA and ventral striatum (nucleus accumbens) showed

greater activation to high-reward cues. Moreover, correlation

between these regions and hippocampus was positively corre-

lated with enhanced subsequent memory. Thus, these results

demonstrate that the basal ganglia can modulate hippocampal

encoding to enhance memory based on an estimate of future,

as opposed to immediate, utility.

Though theorizing has primarily focused on initial encoding,

a similar adaptive encoding account could be extended to

nigra-striatal involvement during retrieval, as well. As noted

above, the successful retrieval of an item from memory is itself

evidence that this item holds some utility in the current context.

Thus, it is generally adaptive to increase the likelihood of future

retrieval of that item, given an analogous context (also see Roe-

diger and Butler, 2011). Hence, to the extent that cells in SN/VTA

fire at retrieval—whether as an obligatory marker of retrieval

success or reflective of the expected utility of the retrieved infor-

mation for the current context—dopamine projections to hippo-

campus could enhance re-encoding and so prioritize items in

memory as a function of their retrieval history. Importantly, de-

scending inputs from ventral striatum to VTA (Figure 1B; Lisman

and Grace, 2005) could provide modulatory input related to the

adaptive value of retrieved information for current goals,

providing greater contextual specificity to re-encoding.

Adaptive encoding can provide a reasonable account of

a portion, though not all, of the evidence regarding striatal

involvement at retrieval. Certainly, retrieval success and novelty

effects in striatum, as observedwith fMRI, could reflect encoding

modulation in accord with the current utility of an item. Indeed,

even differences between source retrieval and item familiarity/

general recollection could relate to the degree of match between

retrieved information and a maintained goal. However, the

evidence of retrieval deficits in patient groups with basal ganglia

dysfunction (e.g., Cohn et al., 2010) argues that striatum also

plays a role in retrieval itself, rather than exclusively influencing

future retrieval attempts. With this in mind, we will now consider

two hypotheses that propose a role for striatum in ongoing

retrieval.

Hypothesis 2: Adaptive Gating of Working Memory

to Control Retrieval

Striatum may modulate retrieval itself in accord with the ex-

pected utility of retrieval success in the current context. As noted
386 Neuron 75, August 9, 2012 ª2012 Elsevier Inc.
above, if one takes the goal of memory retrieval to be recovering

those items with high expected utility given the context, then

cognitive control of memory is a means by which the priority of

items in memory can be modified on-line to increase the likeli-

hood of retrieving relevant information and minimize the influ-

ence of irrelevant information. In its specifics, this objective

can be reached by a number of means, and indeed, there are

likely several control mechanisms that operate complementarily

at different stages of retrieval. For example, attention might be

directed to cues in the environment that increase the likelihood

of successful retrieval. Likewise, a cue might be maintained in

working memory or semantically elaborated to allow it to

influence retrieval. Following retrieval, monitoring of retrieved

information and selection of information that matches decision

criteria or behavioral goals can ensure accuracy and precision.

Cognitive neuroscience research on the cognitive control of

retrieval has provided a share of evidence regarding how PFC

is organized to support these functions (e.g., Shimamura,

1995; Rugg et al., 2003; Dobbins and Wagner, 2005; Badre

and Wagner, 2007; Öztekin and Badre, 2011; Gallo et al., 2010).

Importantly, however, all of these cognitive control mecha-

nisms share a common demand to maintain a goal or relevant

contextual feature in working memory in order to provide

a top-down bias on current processing (Desimone and Duncan,

1995; Miller and Cohen, 2001). PFC is widely thought to support

this working memory maintenance function. Also critical for

working memory is a ‘‘gate’’ that will let goal relevant contextual

information into working memory and will keep irrelevant

information out (Hazy et al., 2006; Braver and Cohen, 2000).

The striatum may act as this working memory gate (O’Reilly

and Frank, 2006).

As one example of how gating of working memory could influ-

ence retrieval, consider that certain cues are more likely to

yield retrieval of goal-relevant information than others. Hence,

maintaining those particular cues (and not others) in working

memory—such as by sustaining a distributed pattern of neural

activity in the PFC—provides a top-down input to the MTL

system that will bias retrieval toward associates of that particular

cue. At least two capacities are critical for this mechanism

to operate: (1) cues must be identified that are of potentially

high expected value in the retrieval context, where here ex-

pected value is directly related to the likelihood of retrieving

task relevant information, and (2) high value cues should be

selectively allowed into working memory while inhibiting irrele-

vant or misleading cues.

As noted above, the striatum has been implicated in this type

of adaptive gating of PFC to support workingmemory and cogni-

tive control over action (McNab and Klingberg, 2008; Landau

et al., 2009; Cools, 2011). In computational models of working

memory (e.g., O’Reilly and Frank, 2006), neural networks simu-

late parallel corticostriatal loops that are responsible for working

memory gating, determining which representations are main-

tained in recurrent ‘‘PFC’’ layers. Based on dopaminergic

learning signals, striatum learns to gate representations into

PFC that lead to better outcomes (i.e., have high utility given

the context) and suppress those leading to less rewarding

outcomes. Once learned, gating proceeds upon encounter

with a contextual input associated with high utility. Gating itself
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can be accomplished through frontostriatal-thalamic loops

(Alexander et al., 1986) that modulate maintenance activity in

PFC. Relative to the learning or evaluative component of this

system that may be more associated with ventral striatum, this

gating function may be differentially carried out by the dorsal

striatum (O’Doherty et al., 2004; Tricomi et al., 2004; Cohen

and Frank, 2009).

This network architecture is generally supported by various

lines of behavioral, pharmacological, neuroimaging, and patient

work (Cools et al., 2006; Dahlin et al., 2008; Frank and Fossella,

2011; Badre and Frank, 2012), and computational models using

this frontostriatal ‘‘gating’’ network architecture have been

applied to tasks involving working memory, task-switching,

and contingent action selection (e.g., O’Reilly and Frank, 2006;

Moustafa et al., 2008; Frank and Badre, 2012). Thus, extended

to memory retrieval, cues or retrieval strategies that previous

experience has associated with high expected value for retrieval

could be gated into or excluded from working memory by these

same frontostriatal circuits.

The adaptive gating hypothesis is generally consistent with the

evidence regarding the contribution of striatum to declarative

retrieval, though limited direct evidence exists. Certainly,

retrieval success effects and novelty responses could reflect

an encounter with a cue or deploying a strategy that is relevant

to a decision about oldness/novelty. Moreover, gating demands

will increase in any retrieval context requiring more cognitive

control; as contextual elements, goals, retrieval strategies, and

interim products of retrieval are updated and maintained in

working memory. Hence, evidence of greater striatal activation

that accompanies PFC activation for source relative to item

retrieval, during controlled semantic retrieval, or with increased

output position during free recall (Long et al., 2010) is broadly

consistent with the gating hypothesis. Also, potentially consis-

tent with this interpretation, one multimodal imaging study using

fMRI and SPECT reported a correlation of increased D2 receptor

binding in striatum with greater left VLPFC activation during

proactive interference resolution (Nyberg et al., 2009).

Retrieval deficits in patients under conditions requiring greater

control could likewise be traced to ineffective working memory

gating. For example, as already discussed, the recollective

deficit observed in PD patients following deep encoding (Cohn

et al., 2010) could reflect a failure to take advantage of an effec-

tive encoding strategy, perhaps because of a failure to gate

adaptive cues or retrieval strategies into working memory that

were afforded by the deep encoding task.

Thus, across neuroimaging and neuropsychological studies,

the gating hypothesis is broadly consistent with striatal involve-

ment in cognitive control of memory retrieval. However, none of

the studies cited provide direct evidence for this interpretation

over others. Directed future research will be required to test

this hypothesis and to dissociate striatal updating/selection

from PFC maintenance during memory retrieval.

Hypothesis 3: Reinforcement Learning and Adaptation

of Cognitive Control at Retrieval

Just as striatum may mark the expected value associated with

anticipated retrieval in a particular context, it may also be impor-

tant for adapting cognitive control based on deviations from

expectations about retrieval outcome. As introduced in the
preceding discussion, striatummust acquire expectations about

the value of particular retrieval strategies and control representa-

tions in order to support a gating function. Likewise, when these

strategies prove to be ineffective or become obsolete, the

system must revise its expectations or even shift to new strate-

gies. In the reinforcement learning literature, the deviation of an

outcome from an expectation is referred to as a reward predic-

tion error (RPE; Schultz et al., 1997; Sutton and Barto, 1998;

O’Doherty et al., 2004). In order to learn the relationship between

a context, a course of action, and a particular outcome, a positive

RPE reinforces a particular behavior and makes it more likely to

be chosen in an analogous context in the future. Conversely,

a negative RPE punishes a particular course of action andmakes

it less likely to be chosen. Thus, over the course of learning,

behavior incrementally converges on statistically optimal behav-

ioral strategies given the context. In the striatum, which repre-

sentations to gate into working memory and which to suppress

may be learned through modulation of synaptic plasticity by

dopaminergic RPE signals computed in the midbrain. For

example, these signals may modulate the activity of separate

populations of ‘‘Go’’ and ‘‘NoGo’’ neurons that express D1 and

D2 dopamine receptors respectively (Shen et al., 2008; O’Reilly

and Frank, 2006).

Applied to the cognitive control of memory, RPE could hypo-

thetically operate in a similar manner, reinforcing or punishing

selection/maintenance of a particular retrieval strategy given

the context. Becker and Lim (2003) proposed a model of

semantic clustering in free recall that provides an example of

how RPE might drive adjustments in control of memory (also

see Gorski and Laird, 2011). This model sought to simulate

semantic clustering strategies during recall. Clustering was

implemented by maintaining a semantic context in ‘‘PFC’’

working memory units where it influenced serial retrieval by the

MTL/hippocampus. After each item was retrieved, it was

assessed for its familiarity. Items associated with too much or

too little familiarity were judged as errors (i.e., repetitions or intru-

sions, respectively). Either of these errors produced a negative

RPE that punished the maintenance of a particular semantic

context (i.e., retrieval strategy) in PFC. When enough such errors

accumulated, the category maintained in PFC shifted.

This model simulates classical semantic clustering, as well as

reductions in recall due to a ‘‘frontal’’ challenge, namely dividing

attention (Moscovitch, 1994). Importantly, the model highlights

that recall itself can be affected not only by demands on main-

taining a strategy but also detectingwhen a strategy has become

obsolete and a shift is in order. Consistent with this insight,

frontal patients have been shown to use fewer numbers of

semantic categories for clustering than controls, even when

controlling for deficits in the degree to which they retrieve

semantically related items consecutively (Jetter et al., 1986;

Hildebrandt et al., 1998). Hence, this model illustrates that RPE

could be an important signal used by the brain to adjust memory

retrieval strategies.

Within the declarative memory domain, there is some behav-

ioral evidence that participants adjust their retrieval strategies

based on feedback about outcomes. Han and Dobbins (2009)

manipulated explicit feedback to differentially reinforce ‘‘old’’

responses in a recognition memory task and found that
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participants become more or less likely to endorse memory

probes as ‘‘old.’’ This shift in behavior occurred gradually over

the course of learning and persisted even in blocks after the

feedback was removed. This suggests that participants had

adaptively adjusted a latent criterion threshold that they use to

evaluate retrieved mnemonic evidence and/or to choose their

response. Theoretically, these adjustments could arise from an

RPE, as in a mismatch between the expectations of participants

regarding the outcome of their report (old/new) and the feedback

they received. Such an RPE could be computed in the striatum.

Considerable evidence has already linked the basal ganglia

in general and striatum in particular to incremental adjustments

in behavior in accord with RPE (though see Berridge, 2007).

Classically, patients with basal ganglia disorders, like PD

patients, show deficits in tasks, like the weather prediction

task, in which links between a state, action, and outcome must

be learned based on reinforcement (Knowlton et al., 1996; Gluck

et al., 2002; Poldrack et al., 2001). Similarly, evidence from rein-

forcement learning tasks that estimate learning rates in individual

participants and model RPE based on a participant’s specific

sequence of responses and reward has repeatedly shown that

activation in ventral striatum tracks trial-to-trial changes in RPE

(O’Doherty et al., 2004, 2007; Gläscher et al., 2010; Daw et al.,

2011; Badre and Frank, 2012). There is also some evidence

that this type of reinforcement learning may influence learning

of working memory gating functions by dorsal striatum (Frank

and O’Reilly, 2006; Moustafa et al., 2008; Badre and Frank,

2012). Thus, RPE may play a similar role in memory control

and either reinforce memory control strategies or drive changes

in them in accord with the deviation from expected retrieval

outcomes.

As with the gating hypothesis, the reinforcement learning

hypothesis is broadly consistent with evidence linking striatum

to cognitive control. Retrieval success effects could reflect the

positive RPE associated with the success of a retrieval strategy

(i.e., achieving a goal; e.g., Han et al., 2010). Likewise, evidence

linking striatum to retrieval tasks that place greater demands on

cognitive control could reflect adjustments in control as retrieval

unfolds.

More directly, there is also some limited evidence that striatal

activation can vary as a function of deviations from expectation

during memory retrieval. Tricomi and Fiez (2008) reported

a paired-associate learning task, in which participants first

learned the associations by randomly choosing between two

answer choices and then receiving feedback on their accuracy.

On subsequent memory trials, participants made their decisions

based on their memory of the correct response from earlier trials,

again receiving feedback on their performance. Caudate activa-

tion was evident on the memory trials but not the initial learning

trials, suggesting that the caudate was selectively engaged

when participants are expecting the feedback to provide infor-

mation about the accuracy of their memory decisions. O’Connor

and colleagues (2010) examined the interaction between expec-

tations and retrieval success effects by manipulating partici-

pants’ expectations of upcoming oldness in a recognition

memory test. Participants saw a valid or invalid anticipatory

cue (‘‘likely old’’ or ‘‘likely new’’) before each recognition judg-

ment. The caudate was active not only in the ‘‘retrieval success’’
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contrast, but also in a contrast comparing invalid cue trials

versus valid cue trials, suggesting that the caudate activity

may serve as a marker of the violation of memory expectations.

To summarize, then, there is evidence that people can take

advantage of feedback to adjust their memory retrieval strate-

gies; a process that could reasonably be assumed to rely on

some form of RPE. And, there is evidence that striatal activation

tracks deviations from expectation during retrieval tasks and so

is potentially modulated by RPE. These observations motivate

the hypothesis that RPE signals in striatum support experi-

ence-driven adjustments in cognitive control strategies during

retrieval. However, it remains to be demonstrated that these

RPE signals are the source of behavioral adjustments in memory

control.

Conclusion
There has been a growing recognition of the role of striatum

across cognition, extending beyond basic motor control and

being implicated in domains such as action selection, working

memory, reinforcement learning, and cognitive control. Indeed,

the results reviewed here suggest that striatum interacts with

other brain regions, such as prefrontal cortex and hippocampus,

in declarative memory retrieval. In particular, the extant neuroi-

maging and neuropsychological literature implicate striatum in

oldness and novelty detection, goal-relevant decision processes

in recognition memory, and the cognitive control of episodic and

semantic memory (Table 1).

Considering these observations, it is evident that striatum

plays a critical role in optimal memory retrieval, but the specific

mechanistic contributions of striatum are underspecified.

Drawing on existing theories of striatal function, we have

proposed three possible ways in which striatummight contribute

to declarative memory retrieval, namely through (1) adaptive

encoding at retrieval, (2) adaptive gating of working memory to

control retrieval, and (3) reinforcement learning of retrieval strat-

egies. These hypotheses are likely not mutually exclusive.

Indeed, it seems likely that all three may characterize a compo-

nent of what striatum and/or the broader basal ganglia system is

supporting during retrieval. Moreover, there may be differences

within striatum regarding how these hypothesized functions

are supported. For example, the difference between adaptive

gating and reinforcement learning/evaluation of memory control

strategies—a kind of actor-critic architecture for memory control

(e.g., Bornstein and Daw, 2011; Botvinick et al., 2009; Niv, 2009;

Holroyd and Yeung, 2012)—could be supported by dorsal

versus ventral striatum respectively.

It is also important to clarify that the hypothetical contributions

of striatum to declarative retrieval performance proposed here

need not exclusively support those cognitive control processes

that lead to improved retrieval itself. Cognitive control can affect

the accuracy and precision of retrieval, as illustrated by the

examples provided above. However, cognitive control may

also adjust decision criteria and response selection policy during

memory tasks in order to gain positive task outcomes, indepen-

dently of the underlying retrieval outcomes. In other words,

cognitive control may also bias reports during memory tasks

as opposed to affecting discrimination, per se (Lauwereyns

et al., 2002; Maddox and Bohil, 2005). And indeed, certain
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manipulations such as those that incentivize particular reports

(old versus new, for example; Han and Dobbins, 2009; Han

et al., 2010) are likely examples of adaptation occurring at

this decision stage, as opposed to affecting retrieval or

discrimination directly. Nevertheless, whether cognitive control

mechanisms are directed toward achieving a particular retrieval

goal, such as recovering a particular type of information from

memory or maximizing positive outcomes by biasing reports,

striatum may play a similar role in utility-driven updating and

selection of working memory representations to influence

performance.

Finally, it is important to note that though we have drawn an

analogy between striatal function during declarative memory

tasks and existing models of striatum developed outside of

the memory domain, mapping value to memory signals and

processes—which is at the base of all three hypotheses—is

different in important ways from typical reinforcement learning

tasks that map value to a stimulus-action pairing. In particular,

declarative memory representations are abstract and multidi-

mensional and are shaped by the retrieval process itself. Thus,

items or contexts with different features may elicit similar

memory signals and conversely items with highly overlapping

features may be treated differently depending on the nature of

the memory signal being computed. Thus, in the context of

memory, striatal function should not be conceptualized as

mapping value to stimulus-action pairs. Rather, one must

consider the problem of assigning value to levels and types of

mnemonic representations and processes. Similarly, valuation

itself within the memory domain is somewhat different than in

traditional contexts. For example, value could be based on the

match of a latent memory state to expectations, the degree of

effort minimization that follows from successful retrieval, and/

or the variability in retrieval outcome (akin to outcome variance

in reinforcement learning; e.g., Niv et al., 2012). Hence, moving

forward, it is crucial to study the contribution of striatum to

declarative memory in the context of memory retrieval itself,

rather than by analogy with other domains. Future directed

investigations will be required to provide a more concrete view

of the mechanistic role of striatum in declarative memory

retrieval.
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